Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Pegah Esmaeilzadeh

Pegah Esmaeilzadeh

Martin Luther University of Halle-Wittenberg, Germany

Title: A responsive thiolated polysaccharide multilayer nanocoating for tuning cell adhesion and cell detatchment

Biography

Biography: Pegah Esmaeilzadeh

Abstract

Advanced efforts in the design of responsive biomedical coatings are focused on the decoration of surfaces with functionalities that promote a predetermined biological response such as modulating cell adhesion and proliferation as well as cell detachment. Following this aim, we synthesized a stimuli-responsible cell carrier nano-coating system with multilayers made of thiolated chitosan (t-Chi) and thiolated chondroitin sulfate (t-CS) units. This redox-responsive multilayer system was realized by intrinsic cross-linking triggered by oxidative stimuli, while these bridges were prone to dissociation under reductive conditions. It is remarkable that this chemical changes were fully reversible as demonstrated by repeated oxidation and reduction (Oxi-to-Re) or in opposite from reduction to oxidation (Re-to-Oxi) cycles. The physical properties of multilayers during these treatments were studied by in situ spectroscopic ellipsometry and liquid-based atomic force microscopy and surface plasmon resonance showing changes of layer thickness and elastic modulus. Since protein adsorption is a prerequisite of cell adhesion, binding of fibronectin was studied with a fluorescent labeling technique. Correspondingly, the novel multilayer nano-coating was used to define the human dermal fibroblast cell microenvironment and the impact of switching cycles on cell adhesion and detachment events was verified. The latter is presented briefly in figure 1. As this thiolated polymeric system is responsive to the body’s internal stimuli like pH and redox, it holds great promise for medical applications and stimuli-sensitive drug delivery systems.