Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nicole R S Sibuyi

Nicole R S Sibuyi

University of Western Cape, South Africa

Title: Development of multifunctional gold nanoparticles for selective induction of apoptosis in target cells

Biography

Biography: Nicole R S Sibuyi

Abstract

Development and progression of chronic diseases such as obesity and cancer, is dependent on angiogenesis for nutrients and oxygen supply to diseased cells. As such, pharmacological inhibition of angiogenesis is therefore a sensible strategy for treatment of these diseases. The aim of this study was to develop targeted anti-angiogenic gold nanoparticles (AuNPs) that can be delivered selectively to the target cells and trigger the apoptotic cell death. The AuNPs were bi-functionalized with a targeting peptide and a pro-apoptotic peptide. The targeting peptide (adipose homing peptide, AHP) used in the study binds to a protein that is overexpressed by endothelial cells in the white adipose tissue (WAT) vasculature of obese subjects. We previously evaluated the bio-distribution of nanomaterials functionalised with the AHP and demonstrated that these nanoparticles accumulated in the WAT of animal models of obesity. In the current study, the bi-functionalized AuNPs were synthesized then characterised by UV-Vis, Zeta potential and TEM. The selective targeting and toxicity of the targeted-AuNPs was investigated on three human cancer cell lines (Caco-2, MCF7 and HT29), of which Caco-2 cells express the cell surface receptor for AHP. The AuNP toxicity on cells was evaluated using the WST-1 and the APO Percentage assays, while the AuNP uptake was confirmed by ICP-OES analysis. The AuNP cytotoxicity was more pronounced in the cells expressing the receptor for AHP, the Caco-2 cells. The uptake of the bi-functionalized AuNPs was higher on target cells, the bifunctionalized AuNPs showed receptor mediated targeting and targeted destruction of Caco-2 cells following apoptosis pathway. The bi-functionalized AuNPs demonstrates potential for the development of targeted anti-angiogenic strategy for the treatment of obesity and possibly also colon cancer. The therapeutic efficacy and specificity of bi-functionalized AuNPs in animal models of obesity and cancer is underway.