Abdulrahman M Elbagory
University of the Western Cape, South Africa
Title: Green synthesis of gold nanoparticles from South African plant extracts for the treatment of skin infection wounds
Biography
Biography: Abdulrahman M Elbagory
Abstract
Statement of the Problem: The preparation of gold nanoparticles (AuNPs) involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals and procedures. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly and biocompatible nanoparticles using plant-derived phytochemicals. Several green synthesized AuNPs have been shown to have antibacterial effect. There is growing need for effective and safe antimicrobial agents to treat infected deep wounds. The aim of this study was to green synthesize AuNPs from plants, evaluate their antibacterial activity against skin wound infection bacteria including methicillin-resistant Staphylococcus aureus and also measure their toxicity on human normal fibroblast cell line (KMST-6).
Methodology: The AuNPs were biosynthesized according to Elbagory et al. (2016) from aqueous extracts of the South African Galenia africana and Hypoxis hemerocallidea plants. The AuNPs were characterized using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering and High Resolution Transmission Electron Microscopy. The antibacterial activity of the biosynthesized AuNPs were tested using Alamar blue assay. The toxicity of the biosynthesized AuNPs was evaluated in vitro using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay.
Findings: Spherical AuNPs were formulated ranging in size from 15 to 25 nm in diameter (Figure 1). The AuNPs from H. hemerocallidea were shown to have antibacterial activity against the tested bacteria strains except Salmonella sp., whereas Galenia-AuNPs only exhibited antibacterial activity against Pseudomonas aeruginosa (Table 1). Both AuNPs showed no toxicity on KMST-6 cells at the highest tested concentration (32 nM) after 24 hrs treatment.
Conclusion & Significance: Different AuNPs were successfully synthesized from plants using green nanotechnology. The results reveal that these AuNPs have antibacterial effects that can be safely employed in wound infections.